Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(38): 11707-11723, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36098635

RESUMO

The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La extract had a total corrosion resistance (RT) of 3107 Ω cm2 after 24 h, which is much greater than the MS immersed in the blank solution (1378 Ω cm2). Furthermore, the potentiodynamic polarization analysis indicated a 50% reduction in the corrosion rate (CR) of the MS soaked in the solution containing released PDA and La3+ inhibitors compared to the blank solution. EIS and salt spray analysis were used to assess the self-healing capabilities of epoxy coatings incorporating modified CNFs. EIS assessment of scratched coatings revealed a 117% improvement in RT of the CNF-PDA-La/EP coating compared to the Blank/EP after 10 h of immersion in the saline solution. This enhancement is due to the intelligent release of PDA and La3+ inhibitors at the scratch sites, which can mitigate MS corrosion by forming a PDA-Fe complex and the deposition of La(OH)3 on the MS surface. The salt spray test results also exhibited the CNF-PDA-La/EP coating's superior anti-corrosion capabilities after 20 days. Hence, this research presents a logical approach for developing anti-corrosion coatings with improved nanofiller compatibility and self-healing characteristics.


Assuntos
Cáusticos , Nanofibras , Carbono , Materiais Revestidos Biocompatíveis/química , Resinas Epóxi , Concentração de Íons de Hidrogênio , Indóis , Íons , Polímeros , Solução Salina , Cloreto de Sódio , Aço
2.
ACS Appl Mater Interfaces ; 13(35): 42074-42093, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428889

RESUMO

MXene sheets, as new 2D nanomaterials, have been used in many advanced applications due to their superior thin-layered architecture, as well as their capability to be employed as novel nanocontainers for advanced applications. In this research, intercalated Ti3C2 MXene sheets were synthesized through an etching method, and then they were modified with 3-aminopropyltriethoxysilane (APTES). Cerium cations (Ce3+) as an eco-friendly corrosion inhibitor were encapsulated within Ti3C2 MXene sheets to fabricate novel self-healing epoxy nanocomposite coatings. The corrosion protection performance (CPP) of Ce3+-doped Ti3C2 MXene nanosheets (Ti3C2 MXene-Ce3+) in a 3.5 wt % sodium chloride (NaCl) solution was studied on bare mild steel substrates using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The self-healing CPP of epoxy coatings loaded with 1 wt % undoped and doped Ti3C2 MXene was evaluated using EIS, salt spray, and field emission scanning electron microscopy (FE-SEM) techniques. The introduction of Ti3C2 MXene-Ce3+ into the corrosive solution and artificially scribed epoxy coating enhanced the total impedance from 717 to 6596 Ω cm2 and 8876 to 32092 Ω cm2, respectively, after 24 h of immersion compared to the control samples.

3.
J Biosci Bioeng ; 129(1): 67-76, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31445821

RESUMO

This study reports the fabrication of a new cathode electrode assembly using polyaniline (PANI) and graphene on a stainless steel mesh (SSM) as an alternative for the conventional expensive cathode of microbial electrolysis cells (MECs). With respect to the previous efforts to propose an efficient and cost-effective alternative for platinum (Pt) catalysts and cathode electrodes, the present study investigates the assessment of different catalysts to elucidate the potential of the modified SSM cathode electrode for larger-scale MECs. In the case of feeding dairy wastewater to the MEC, the maximum hydrogen production rate and COD removal were obtained by SSM/PANI/graphene cathode and had the values 0.805 m3 H2 m-3 anolyte day-1 and 82%, respectively, at the applied potential of 1 V. These values were only 20% and 7% lower than those of the MEC with Pt on the carbon cloth cathode, respectively. The coulombic efficiencies of SSM/Pt and SSM/PANI/graphene were seen to be 64.48% and 56.67%, respectively. It was also concluded that the fabrication cost of the modified cathode was 50% lower than the conventional cathodes with Pt on the carbon cloth. Finally, the evaluation of the modified cathode performance was achieved based on Fourier transform infrared spectroscopy, linear sweep voltammetry, scanning electron microscopy, and atomic force microscopy.


Assuntos
Bactérias/química , Eletrólise/métodos , Hidrogênio/química , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Carbono/química , Catálise , Eletrodos , Eletrólise/instrumentação , Hidrogênio/metabolismo , Platina/química , Águas Residuárias/química , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...